

Topology Sensitive Volume Mesh Simplification
with Planar Quadric Error Metrics

Prashant Chopra, Joerg Meyer*

University of California, Irvine, Department of Electrical Engineering and Computer Science

Figure 1: Boundary envelopes of four levels of detail of the super phoenix dataset (12,936 tetrahedral elements). The simplified mesh in
the final image has only 46.58% of the original number of volume elements. CPU user time for simplification was less than one minute as
measured on an SGITM O2+ MIPS R12000 400 MHz.

Abstract
We introduce an algorithm for fast topology-sensitive decimation
of volume meshes. The algorithm employs a planar quadric error
metric to guarantee minimum geometric error at every
simplification step, while maintaining the input mesh's geometric
consistency, and restraining changes to its topological genus, at
low computational costs. The proposed method presents a new
alternative to existing volume mesh decimation schemes, and lies
between computationally intensive edge-collapse-based
algorithms [1, 2, 3, 4], and a rapid topology-insensitive volume
decimation approach [5]. The applications include, but are not
limited to, rapid Level of Detail (LOD) generation, progressive
volume rendering for scientific visualization applications, and
representing volume meshes with minimal geometric complexity
in computer games and entertainment media.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling – surfaces and object
representations.

Keywords: volume mesh simplification, multi-resolution, level-
of-detail, unstructured meshes.

1. INTRODUCTION
Scientists and engineers frequently deal with complex volumetric
models that are difficult to store, transfer, or render with available
computing resources. Such models typically have an associated
attribute domain space spanning over multiple dimensions
(possibly time-varying scalar, vector, or tensor attributes, or even
geometry) that adds to the complexity [6, 22, 8].

*
 644E Engineering Tower, Irvine, CA 92697-2625

 {pchopra | jmeyer}@uci.edu
 http://vis.eng.uci.edu

In the recent past, this challenge has motivated computer scientists
to explore algorithms that reduce the geometric complexity of
such volume models. Almost all of the proposed methods either
assume a tetrahedral mesh, or break down a tessellated volume
into tetrahedra. Tetrahedra are preferred for discrete volume
representation because of their simplicity, and because of their
convex shape, which makes them suitable as volume rendering
primitives. Most of these decimation algorithms evolved from
efficient polygon-mesh simplification algorithms [9, 10, 11, 12,
13, 14, 15, 16, 17], and provide solutions for topology related
inconsistencies that may occur during/after volume mesh
simplification.

Recently, a rapid volume mesh decimation algorithm, TetFusion,
was proposed [5]. This algorithm defines a tetrahedron as the
most basic geometric primitive for collapse. However, it does not
handle topological changes that might affect a mesh during
simplification, and is limited to only interior tetrahedra of a
volume (the boundary elements are not decimated at all). We
propose a volume mesh simplification algorithm that employs a
planar quadric error metric to guarantee minimum geometric and
attribute error upon each collapse. We show how a simple
geometry decimation operation, along with an efficient geometric
error metric, can take care of complex mesh inconsistency
problems with minimal additional computational complexity. Our
new algorithm ensures that a mesh stays within (and
infinitesimally close to) its boundary envelope at all levels of
resolution during simplification. The major contribution of this
paper is a locally greedy progressive simplification algorithm for
volume meshes, that

- is driven by a rapid space redistribution strategy,
- handles cases of mesh-inconsistency, while preserving the

boundary envelope of the mesh, and
- employs a planar quadric error metric to guarantee

minimum error in the geometric domain when collapsing
the tetrahedral elements.

Figure 2: Boundary envelopes of four levels of detail of a synthetic box dataset (3072 tetrahedral elements originally). The original mesh
was simplified by 64.48% in less than 10 seconds (on an SGITM O2+ MIPS R12000 400 MHz), with perfect boundary feature preservation.
The color represents the scalar attribute associated with the mesh vertices; the primitives are rendered using smooth shading.

Section 2 describes related work in the general area of mesh
simplification. It describes the challenges that arise when
simplifying volume meshes, and the existing approaches used to
address them. Section 3 describes our new algorithm: QTetFusion,
which combines boundary and feature preservation in a single,
computationally efficient algorithm. Section 4 presents the results
of experimental runs of the algorithm on selected datasets. Section
4 concludes the paper with a discussion of merits and drawbacks
of this new approach.

2. RELATED WORK

There have been a number of publications in the area of mesh
simplification in recent years, targeting a reduction of the
geometric complexity of both surface and volume meshes. Both
refinement- and decimation-based strategies have been explored
in this pursuit. We first briefly discuss important works in the area
of polygonal mesh reduction, because they have historically
influenced almost all of the existing volume mesh simplification
algorithms (section 2.1). We then discuss existing volume
decimation algorithms in section 2.2.

2.1 Surface Mesh Simplification

This section describes selected algorithms that simplify polygonal
(surface) meshes. Most of the related work surveyed in this
category is based on geometry reduction techniques (as opposed
to refinement-based techniques), which iteratively decimate one
or more primitives in a local or global error-metric guided
fashion. Some of the methods then consolidate the mesh using the
remaining (smaller) number of primitives. Some of the noted
works in this area, that affected the efforts in volume mesh
simplification also, are: Schroeder et al. [21] [22], Hoppe [13],
Turk [27], and Garland and Heckbert [10] etc. For further
literature, the authors suggest a reference to the survey report on
multi-resolution modeling by Garland [9] for a detailed analysis
of numerous relevant publications.

2.2 Volume Mesh Decimation

Only a few attempts have been made to address volume mesh
simplification. We focus specifically on tetrahedral mesh
decimation because of the common use of tetrahedra in
representing unstructured volumetric models in the scientific
community.

Trotts et al. [3] were amongst the first to implement a tetrahedral
mesh decimation algorithm. They extend polygonal geometry
reduction techniques to tetrahedral meshes, and present a
tetrahedral collapse operation as a sequence of three edge
collapses, while keeping the overall geometric error within a
tolerance range. The error-metric used is based on a unique
spline-segment representation of each tetrahedron. The paper
discusses several problems and difficulties specific to tetrahedral
mesh simplification. Further, because the decimation strategy is
based upon successive ‘edge collapses’, the algorithm suffers
from overwhelming overheads for the data structures to store edge
information for massive volumetric datasets. The paper does not
mention the high time complexity of the algorithm [3].

Staadt and Gross [2], in their work on progressive
tetrahedralization, pursue a specialized class of simplicial
complexes [13]: tetrahedra. The algorithm proposed is thus a
conceptual extension of ‘edge collapse’ employed for progressive
simplification of surface meshes [11]. The algorithm points out
and provides solutions for previously undiscussed cases of
‘negative tetrahedra’ (flipping), self-intersections, and
intersections at boundary regions. However, the dynamic mesh-
consistency tests that are proposed as solutions are
computationally expensive. As an example, the algorithm
reportedly took about five hours to simplify a 576,576 tetrahedral
elements mesh [2].

Trotts et al. [4], in an extension to their earlier work [3],
incorporate a scalar-attribute preservation metric. The new
algorithm ties the approximation error to the deviation of a
simplified scalar field from the original values. They simplify the
complex energy terms used for error evaluation in other methods.
Noting the topological problems and degeneration cases that occur
when using a sequence of three edge collapses (which require
computationally expensive solutions), they revert back to a single
edge collapse. Citing the results section from this publication,
their best performing algorithm took 2,557 minutes (about 42
hours) to simplify a 449,890-element blunt fin dataset by 83.9%.
The computational overhead introduced by these methods added
to our motivation to explore alternative methods for simplification
of volume meshes that are computationally less expensive.

Measuring domain error and accordingly calibrating
simplification strategies for an accurate approximation is an
important issue, which had been under-rated in volume mesh
decimation research, until Cignoni et al. [1] presented a
framework for integrated error evaluation for both domain and

field approximations during simplification. They stress on
accurate estimation of domain errors while employing ‘edge-
collapse’-based decimation strategies. The paper elaborately
explores local accumulation, gradient difference, and brute force
strategies to evaluate and predict domain errors while
incrementally simplifying a mesh.

When addressing mesh approximation, topology preservation is
another important concern for volumetric models (e.g., volume
rendering applications in the engineering or scientific domain). In
his recent work, Edelsbrunner [19] provides an extensive
algorithmic background for ensuring topological correctness
during edge-collapse based mesh simplification. Dey et al. [20]
provide detailed criteria for topological correctness, which can be
generalized to polyhedral meshes.

We are presenting a computationally efficient (tetrahedral)
volume mesh simplification method that combines metrics for
accurate data representation with techniques for restraining
volumetric topology changes in a rapid tetrahedral mesh
decimation algorithm.

(a) Before collapse (b) After collapse

Figure 3: An illustration of an instance of the QTetFuse
operation. The upper-left red (prey) tetrahedron is the one to
collapse onto its fusion point. The green tetrahedron degenerates
into a line, which is removed consequently (deleted tetrahedron).
The lower black (affected) tetrahedron stretches in the direction of
the corresponding fusion point. Note that for the affected
tetrahedron, the vertex it shares with the prey tetrahedron tends to
move ‘away’ from the base plane formed by its other three
vertices (flipping discouraged). If the shown prey tetrahedron is
an interior one, at least eleven tetrahedra collapse as a result of its
collapse (see section 3.2 a).

3. QUADRICS GUIDED FUSION

As discussed in the previous section, almost all of the existing
work addressing volume mesh simplification evolved from ‘edge-
collapse’-based decimation strategies that were originally
proposed for polygonal meshes. However, surface mesh
simplification algorithms cannot simply scale up to handle higher
order simplicial complexes because of additional geometric and
topological constraints. Cases like degenerate simplices, violation
of Delaunay tessellation, loss of topological type (undesired
closing of holes or creation of new ones), intersection of volume

elements at boundary regions, etc., should be specially taken care
of during volume mesh simplification. Such cases have already
been identified and can be avoided with special computational
methods [20, 19]. However, algorithms that present
computationally less intensive simplification schemes either do
not handle all of these cases, or are spatially selective during
decimation and hence cannot provide very high reduction ratios
[5].

To overcome these shortcomings, we present QTetFuse as a
reversible atomic decimation operation for tetrahedral meshes.
The basic idea is to fuse the four vertices of a tetrahedron into a
point (the fusion point, see the definitions in section 3.1). The
fusion point is computed so that minimum geometric error is
introduced during decimation. We employ a planar quadric error
metric to measure and bound this error (described in section 3.3,
see Figure 2 for an illustration).

3.1 Definitions

In this section, we introduce notations that are specific to the
domain of this paper:

3.1 Prey Tetrahedron: A tetrahedron that is selected

for decimation.

3.2 Boundary Tetrahedron: A tetrahedron with one or more

of its vertices lying on the boundary surface. All of the
tetrahedra that are non-boundary shall be called interior
tetrahedra hereafter in this paper.

3.3 Boundary Face: Triangle face of a boundary tetrahedron all

three of whose vertices lie on the boundary surface.

3.4 Fusion Point: Point of collapse of the four vertices of a prey

tetrahedron. One prey tetrahedron may have more than one
valid fusion point depending upon the specified planar
quadric error tolerance value.

3.5 Affected Tetrahedron: A tetrahedron that shares exactly one

vertex with a prey tetrahedron. This shared vertex stretches
the affected tetrahedron towards, and onto the fusion point of
the prey tetrahedron as a result of TetFusion.

3.6 Prey Vertex: The vertex of an affected tetrahedron that it

shares with a prey tetrahedron.

3.7 Base triangle: A triangle formed by the vertices of an

affected tetrahedron, excluding the prey vertex.

3.8 Deleted Tetrahedron: A tetrahedron that shares two or more

vertices with a prey tetrahedron, which collapses as a result
of the collapse of the prey tetrahedron.

Much of these definitions have been borrowed from the author’s
previous work TetFusion [5] for a clarity and conceptual
extension.

3.2 Properties

This section discusses the inherent properties of QTetFusion
(Quadrics guided Tetrahedron Fusion) as a volume mesh
decimation algorithm for tetrahedral meshes:

(a) High decimation: Each instance of QTetFuse operation
decimates at least 11 tetrahedral elements for an interior or
non-boundary prey tetrahedron. This number includes the
prey tetrahedron, exactly 4 tetrahedra each sharing one of the
four faces of the prey tetrahedron, and at least 6 more
tetrahedra each one of which shares exactly one of the six
edges with the prey tetrahedron. This generally means a
‘higher’ lower bound on the decimation ratio per step than an
edge collapse operation. Using a tetrahedral collapse as a
primitive operation avoids some of the topological problems
and degeneration cases mentioned by Trotts et al. [4].

(b) No flipping: Upon each decimation step, one or more of the

affected tetrahedra may suffer a ‘flipping’ or negation of the
volume it represents. This can happen only when the vertex it
shares with the corresponding prey tetrahedron (the shared
vertex) flips sides with respect to its base plane (the plane
formed by the other three vertices of the affected tetrahedron).
To avoid such cases, an early rejection test is employed.

(c) Simplified mesh restricted to the inside (and

infinitesimally close to) the boundary envelope of the source
mesh: In the case of QTetFusion, self-intersections of
boundary elements might occur when an affected tetrahedron
pierces through one or more of the boundary faces of a
boundary tetrahedron. We prevent such cases by restricting
the simplified mesh to remain inside its boundary envelope,
and by prohibiting flipping.

(d) Sensitivity towards topological genus of the mesh: Since the

boundary envelope of a polyhedral mesh represents its
topological genus; if the topological genus of the envelope is
preserved, topology preservation for the enclosed volume
mesh is guaranteed. Following from features (b) and (c)
above, the algorithm guarantees that the simplified mesh
remains confined (on)to its boundary envelope. This restrains
the closure of any existing holes, as well as opening of any
new ones. The latter is an inherent property of any edge-
collapse based decimation operation however.

3.3 Planar Quadric Error Metric (PQEM)

This section describes the error metric we employ to bound the
domain errors during simplification. Garland and Heckbert [9]
developed a computationally efficient and intuitive algorithm
employing a Quadric Error Metric (QEM) for rapid progressive
simplification of polygonal meshes. The algorithm produces high
quality approximations and can even handle 2-manifold surface
meshes. We present a Planar Quadric Error Metric (PQEM) based
on the QEM for decimation of a volume element (see figure 3).
To obtain an error minimizing sequence of QTetFuse operations,
we first need to associate a ‘cost’ of collapse with each
tetrahedron in the mesh. As described in [9], we first associate a
quadric error measure (a 4x4 symmetric matrix Q) with every
vertex v of a tetrahedron that indicates the error that would be
introduced if the tetrahedron were to collapse. For each vertex v
of a tetrahedron, the measure of its squared distance with respect
to all incident triangle faces (planes) is given by:

[]() ∑
=

=∆=∆
)(

2)(1)(
vfacesp

T
p

T
zyx vpavvvv (1)

where p = [px py pz d]T represents the equation of a plane incident
on v such that the weight ap represents the area of the triangle
defining p. Further, if n represents the normal vector of p, then d
is given by

Tnvd −= (2)

Equation (1) can be rewritten as a quadric:

∑
=

=∆
)(

2)()(
vfacesp

T
p

T vppavv

vppav
vfacesp

T
p

T









= ∑

=)(

2)(

vQv
vfacesp

p
T









= ∑

=)(

)((3)

where Qp is the area-weighted error quadric for v corresponding to
the incident plane p.

Once we have error quadrics Qp(i) for all the four vertices of the
tetrahedron T in consideration, we simply add them to obtain a
single PQEM as follows:

∑
=

=
4

1

)()(
i

P iQTPQEM (4)

Now if T were to collapse to a point vc, the total geometric error
(for T) as approximated by this metric would be:

c
T

c vTPQEMvT)()(=∆ (5)

0
500

1000
1500
2000
2500
3000

50
1

94
2

60
81

65
88

10
22

5

11
,74

2

14
83

0

Chart 1: A chart depicting the CPU user time (seconds, vertical
axis) based on the number of QTetFuse operations performed
(horizontal axis) for the selected datasets.

3.4 Computing the Fusion Point

Consider a tetrahedron T = {v1, v2, v3, v4}. We compute a point of
collapse (fusion point v) for T that minimizes the total associated
PQEM as defined in equation (5). According to [9], this can be
done by taking the partial derivatives of)(T∆ , and solving them

for 0. The result is of the form

1
1
−= Qv [0 0 0 1]T (6)

where



















=

1000
34332313

24232212

14131211

1 qqqq

qqqq

qqqq

Q (7)

Note that the terms qij are coefficients of the respective PQEM.
There might be cases when the quadric matrix used in the
equation is not invertible. In that case, we settle on the barycenter
of T as the fusion point.

 (a) Polygonal mesh (b) Polyhedral mesh
Figure 5: Error ellipsoids for affected vertices when the primitive
to be decimated is (a) an edge and (b) a tetrahedron. Note that the
yellow ellipsoid in b represents a level-set surface for the Planar
Quadric Error for the prey tetrahedron shown. This quadric error
is the sum of quadric errors for the four constituent vertices of the
tetrahedron.

3.5 The Algorithm

This section describes our locally greedy algorithm: QTetFusion.
The method features a preprocessing phase that evaluates PQEMs
for all the tetrahedra in the input mesh M, and stores them in a
heap data structure. We employ a Fibonacci heap (because of its
better amortized time complexity compared to a simple binomial
heap) to maintain the priority queue of tetrahedral elements keyed
on their PQEMs [21]. The main algorithm is outlined below:

 while heap is not empty
 extract T with minimum)(T∆ from the heap

 if none of adjacentTetrahedra(T) would flip as a
 result of T’s collapse,
 QTetFuse (T)
 update heap

Note that the pseudo procedure adjacentTetrahedra(T) returns a
list of all the tetrahedra adjacent to T.

4. RESULTS AND CONCLUSION

Table-1 and chart-1 summarize the results obtained from
experimental runs of QTetFusion on selected datasets. The CPU
usage results verify the hypothesis that QTetFusion lies between
computationally intensive volume mesh simplification algorithms
[1, 2, 3, 4], and its closest predecessor TetFusion [5]. For example
in a comparative experiment for a reduction of 49.3% of the
187,395 elements blunt fin dataset, TetFusion took 15.480
seconds (SGI R10K 4x194 MHZ); while QTetFusion took
715.074 seconds (SGI R12K 450 MHZ) of CPU user time.
However, QTetFusion presents three important advantages over
TetFusion although bearing a slight additional computational
complexity:

- Sensitivity towards changes in topological genus of the
input mesh,

- reduction of boundary elements (previously not handled
by TetFusion), and

- use of planar quadric error metric to ensure minimum
local geometric error per decimation step (optimal
fusion point instead of the volume element’s
barycenter).

- is feature sensitive (preserves boundary features like
creases, sharp edges etc. by the use of weighted planar
quadric error metrics),

- is more ‘intuitive’ for volumetric meshes than ‘edge–
collapse’-based methods.

Future work: The authors aim at the following goals towards a
wider applicability of the algorithm in the future:

- development of error metrics for guided decimation of
volume meshes with time-varying geometry and domain
attributes, and

- incorporating offline geometry compression [22, 23, 24,
25, 26] with QTetFusion to develop a dynamic (on the
fly) LOD management system for volume meshes as the
one for polygonal meshes in [27].

Acknowledgements
This work has been sponsored by National Science Foundation
under award no. 6066047–0121989 for the SPUR (Seismic
Performance for Urban Regions) project [5, 11, 24]. We would
like to thank our project partners at UC Berkeley, Carnegie
Mellon University, and Mississippi State University for their
continuing support.

We would like to thank Peter Williams, Lawrence Livermore
National Laboratory for the super phoenix dataset, Ricardo Farias,
LNCC Brazil, for providing the tetrahedral mesh subdivision
code, and Michael Garland (UIUC) for an initial discussion on
development of the algorithm. Thanks also to Ruparani Chittineni
for helping with the final draft.

mesh n R/R(%) initHeap (s) QTetFusion (s)

1. super phoenix 12,936 53.648 17.031 31.174
2. blunt fin 187,395 49.294 295.071 715.074
3. comb chamber 215,040 47.201 332.818 976.603
4. oxygen post 513,375 46.462 810.119 2803.575

Table 1(a). Reduction ratios (R/R) and CPU user execution
times (seconds) for heap initialization and actual QTetFusion.

mesh n ndecim # QTetFuse Avg. ndecim

1. super phoenix 12,936 6,940 501 13.852
2. blunt fin 187,395 92,375 6,081 15.684
3. comb chamber 215,040 101,502 6,588 15.407
4. oxygen post 513,375 238,527 14,830 16.084

Table 1(b). Number of QTetFuse operations and the number of
tetrahedra decimated as a result (ndecim).

REFERENCES

[1] Cignoni, P., D. Costanza, C. Montani, C. Rocchini, and R.

Scopigno. Simplification of Tetrahedral Meshes with Accurate
Error Evaluation. In Thomas Ertl, Bernd Hamann, and Amitabh
Varshney, editors, Proceedings of IEEE Visualization 2000 (Salt
Lake City, Utah, October 2000), pages 85-92. IEEE Computer
Society. 2000.

[2] Staadt, O. G., and M. H. Gross. Progressive Tetrahedralizations. In

Proceedings of IEEE Visualization 1998 (October 1998), pages
397-402. 1998.

[3] Trotts, Isaac J., Bernd Hamann, and Kenneth I. Joy. Simplification

of Tetrahedral Meshes. In Proceedings of Visualization 1998
(October 1998), pages 287-296. 1998.

[4] Trotts, Isaac J., Bernd Hamann, and Kenneth I. Joy. Simplification

of Tetrahedral Meshes with Error Bounds. IEEE Transactions on
Visualization and Computer Graphics 5 (3), pages 224- 237. 1999.

[5] Chopra, P., and J. Meyer. TetFusion: An Algorithm for Rapid

Tetrahedral Mesh Simplification. In Proceedings of IEEE
Visualization 2002, held in Boston, MA, pages 133-140. 2002.

[6] Chopra, P., J. Meyer, and Michael L. Stokes. Immersive

Visualization of A Very Large Scale Seismic Model. In Sketches
and Applications of SIGGRAPH 2001 (Los Angeles, California,
August 2001), page 107. ACM SIGGRAPH, ACM Press. August
2001.

[7] Meyer, J., and Prashant Chopra. Building Shaker: Earthquake

Simulation in a CAVETM. Work in Progress, IEEE Visualization
2001 (San Diego, California, October 2001), Abstract, page 3.
2001.

[8] Meyer, J., and Prashant Chopra. Strategies for Rendering Large-

Scale Tetrahedral Meshes for Earthquake Simulation. SIAM/GD
2001 (Sacramento, CA, November 2001), Abstract, page 30. 2001.

[9] Garland, M., and P. Heckbert. Surface Simplification Using

Quadric Error Metrics. In Proceedings of SIGGRAPH 1997, pages
115-122. ACM SIGGRAPH, ACM Press. 1997.

[10] Guskov, I., Kiril Vidimce, Wim Sweldens, and Peter Schroeder.

Normal Meshes. In Proceedings of SIGGRAPH 2000 (New
Orleans, Louisiana, July 2000), pages 95-102. ACM SIGGRAPH,
ACM Press. July 2000.

[11] Hoppe, Hugues. Progressive Meshes. In Proceedings of

SIGGRAPH 1996 (New Orleans, Louisiana, August 1996), pages
99-108. ACM SIGGRAPH, ACM Press. August 1996.

[12] Kalvin, Alan D., and Russell H. Taylor. Superfaces: Polygonal

Mesh Simplification with Bounded Error. In IEEE Computer
Graphics and Applications 16 (3), pages 64-77. 1996.

[13] Popovic, J., and H., Hoppe. Progressive Simplicial Complexes. In

Proceedings of SIGGRAPH 1997, pages 217-224. ACM
SIGGRAPH, ACM Press. 1997.

[14] Renze, K. J., and J. H. Oliver. Generalized Unstructured

Decimation. IEEE Computer Graphics and Applications 16 (6),
pages 24-32. 1996.

[15] Schroeder, William J., Jonathan A. Zarge, and William E.

Lorensen. Decimation of Triangle Meshes. Computer Graphics
26(2), pages 65-70. 1992.

[16] Schroeder, William J. A Topology Modifying Progressive
Decimation Algorithm. In Proceedings of IEEE Visualization
1997, pages 205-212. 1997.

[17] Turk, Greg. Re-tiling Polygonal Surfaces. Computer Graphics,

26(2), pages 55-64. 1992.

Figure 6: Elements that intersect a vertical slice through the
volumes of three levels of detail of the spx dataset. The dataset
gets reduced to 63.93% of the original number of tetrahedra
(12,936) upon decimation.

[18] Garland, M. Multi-resolution modeling: Survey & Future

Opportunities. In EUROGRAPHICS 1999, State of the Art Report
(STAR) (Aire-la-Ville, CH, 1999), pages 111-131. Eurographics
Association. 1999.

[19] Edelsbrunner, H. Geometry and Topology for Mesh Generation.

Cambridge University Press (2001). ISBN 0-521-79309-2. 2001.

[20] Dey, T. K., H., Edelsbrunner, S., Guha, and D. V. Nekhayev.

Topology Preserving Edge Contraction. Publications de l’Institut
Mathematique (Beograd), Vol. 60 (80), pages 23-45. 1999.

[22] Alliez, Pierre, and Mathieu Desbrun. Progressive

Compression For Lossless Transmission Of Triangle Meshes. In
Proceedings of SIGGRAPH’01 (Los Angeles, California, August
2001), Computer Graphics Proceedings, Annual Conference
Series, pages 198-205. ACM SIGGRAPH, ACM Press. August
2001.

[23] Gumhold, Stefan, Stefan Guthe, and Wolfgang Straßer.

Tetrahedral Mesh Compression With The Cut-Border Machine. In
Proceedings of IEEE Visualization 1999 (San Francisco,
California, October 1999), pages 51-59. IEEE Computer Society
Technical Committee on Computer Graphics, IEEE Computer
Society. 1999.

[24] Isenburg, Martin, and Jack Snoeyink. Face Fixer:

Compressing Polygon Meshes With Properties. In Proceedings of
SIGGRAPH 2000 (New Orleans, Louisiana, July 23-28, 2000),
pages 263-270. ACM SIGGRAPH, ACM Press. 2000.

[25] Pajarola, Renato, Jarek Rossignac, and Andrez Szymczak.

Implant Sprays: Compression of Progressive Tetrahedral Mesh
Connectivity. In Proceedings of IEEE Visualization 1999 (San
Francisco, California, October 1999), pages 299-305. IEEE
Computer Society Technical Committee on Computer Graphics,
IEEE Computer Society. 1999.

[26] Szymczak, Andrzej, and Jarek Rossignac. Grow fold: Compression

of Tetrahedral Meshes. In Proceedings of the Fifth Symposium on
Solid Modeling andAapplications (Ann Arbor, Michigan, June
1999), pages 54-64. ACM, ACM Press. 1999.

[27] DeCoro, C., and Renato Pajarola. XFastMesh: Fast View-

dependent Meshing from External Memory. In Proceedings of
IEEE Visualization 2002, pages 363-370. 2002.

